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STABILITY OF PLASTIC ELONGATION OF A BIMETALLIC SHEET

S. 8. Oding UDC 539.214:539.374

The extension of a sheet is limited by the magnitude of the critical strain at which local thinning of the
material begins with the formation of a neck. We solve the problem of the stability of plastic extengion of a bi-
metallic sheet under conditions of plane strain. The solution is constructed by using the theory of finite de-
formations of a rigid-plastic material.

1. We consider the plastic extension of a bimetallic sheet with a given law of variation of length. The
loss of stability in this case can be represented as a process of continuous change of equilibrium shapes.
Therefore the critical strain at which a neck is produced can be determined by the bifurcation method.

Since the loss of stability of deformation under consideration occurs during the plastic deformations de-
veloped, we neglect elastic deformations and assume a model of a rigid-plastic materials with isotropic hard-
ening.

(0

The flow curves of the materials of the layers of the bimetallic sheet crg) =0g (6g) and oéz) = o((}) (eg)
are assumed given. Here superscripts 1 and 2 denote quantities referring to the separate layers of the sheet;
o = [(8/ Z)Sijsu] 1/2 » stress intensity; sy; = 051 , components of the stress deviator; ojj, components of
the stress tensor; ¢ = {1/3)0 mn6mns- hy&rostatlc pressure, and eg, cumulative plastic defar mation.

The problem is to determine the strain ey, beyond which deformation occurs with the formation of a neck.

As the equations of state we take the equations of the deformation theory of plrasticity, written for finite
strains in the form

2
Sii=73

0’
'; €ijs (1.1)
where the ejj are the logarithmic strains; ee = [(2/ 3)eijeij]1/ 2 is the intensity of the logarithmic strains. Log-
arithmic straing are used in Egs. (1.1), since for large deformations the condition of incompressibility of the
material eijéij = 0 is compatible with Egs. (1.1) only for logarithmic strains.

Bifurcation in a state A means that in addition to unperturbed deformation in state A, perturbed deforma-
tion in a state B infinitely close to it is possible.

We introduce a Cartesian coordinate system in state A in such a way that for the same particles the co-
ordinates x; in state B and the coordinate x; in state A are related by the equation
z§ = i+ u, (1.2)
where uj is an additional infinitesimal displacement of a particle. Then
dzy = (83 -+ u; ;) dx;. (1.3)

From now oh subscripts after a comma denote differentiation with respect to the corresponding coor-
dinate x;
i

Retaining only first order infinitesimals in the determinant of system (1.3), we obtain the incompres-
sibility condition of the medium in the form

Voronezh. Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 3, pp. 146-150, May~
June, 1982. Original article submitted March 23, 1981.
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Up,p = 0. ) (1.4)

The derivative of some quantity ¢ with respect to xi is expressed in terms of its derivative with respect
to x; in the form

da/ox; = (8 — up;) . (1.5)
Comparing states A and B, we write all quantities in the perturbed state B in the form
01 = 0% + 045, e} = ef + esjy up = ul + uy,
where oij, eij, and uj, are, respectively, additional infinitesimal components of the stress tensor, the logarith-
mie strain tensor, andthe displacement, A subscript 0 denotes a quantity referring to the unperturbed state A.

In addition to the logarithmic strain tensor e'ij, we consider the Almansi tensor of finite deformations coaxial
with it,

oA fowm 0w ouyou,

& =3 (57-—}_57_E5:)' (1.6)
J 2 i J

As a result of linearization of (1.6), we obtain by using (1.5)

1
&ij = 5 (a5 4 5,5) — (gt s+ wutin,s) + (Ul 0 mth, s+ U2 S i, 1), (1.7)

The relation between the principal components and the principal additional components of these strain
tensors has the form

en ="_% In (1 — 2e1); e = /(1 — 260). (1.8)

From now on by restricting ourselves to a homogeneous subcritical state and superposing the x; axes on
the principal directions of the strain tensor of the unperturbed state, we have

'es; = g;/(1 — 26}) fori =j(no Eoveri, j),

(1.9)
e = &ij (e} — ef) /(e — &f) for it j.
In addition, we rewrite (1.7) in the form
&= % [(1 — 2e2) wz; + (1 — 268} uj ;] (no X over i, j). (1.10)
Substituting (1.10) into (1.9), we have
€ij = Uiy for & =], e;;=1Bu;;+ Bju;,; for i7=] (no Sovert, j, 1.11)

where

1

0
0 0 2 2
85 —¢; v }LJ

By = (1 — 2%)

7"1‘ 0
In 77,-_’ e; = lnk,.
Writing the equations of equilibrium of an element of the medium in states A and B, subtracting one from the
other, and using (1.5), we obtain
O3j,i — Ofialng = 0. (1.12)

As a result of linearizing the equations of state (1.1), we have in our notation

102
Sii=% {-3- ei;+ A (nK — 1) e,}, (1.13)
where
= P K o= i- S 2 "’(i)'
Ue’neey _ag’Ai’—Eﬁ §g_g]
The additional strain intensity is
€, = Amnemn- (1.14)
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We rewrite the boundary conditions from [1}] for an incompressible material in our notation
(035 — ohauzp) v3dS = 8 (Pyds), (1.15)

where dS is an element of area of the surface; v, components of a unit vector normal to the surface of the body
in the unperturbed state; P;dS, components of the surface load vector.

2. We investigate the stability of the biaxial extension of a bimetallic sheet under conditions of plane
strain. The problem of the plane extengion of a uniform sheet was solved in [2] in the approximate Leibenzon—
Ishlingkii formulation.

Let us congider the solution of the problem for a particular layer ofthe sheet. The stresses a% and O'g
develop in the x and z directions in an extended layer of the sheet. The y axis is directed along the normal to
the surface of the sheet. We assume that the subcritical state is plane and homogeneous:

0__ 0 __ 0 _ 0 0 0/9, ,0 2
oy—sxy_sx,—sy,=0,oz=c,/2,ez=0,e2=-ﬁe2.

As in [2], we assume that the sheet loses stability by the formation of a rather extended neck along the z
axis. Under these assumptions Eqs. (1.4) and (1.11)-(1.14) reduce to the single equation

(—f’i+2a‘3—4+r32—ai)uy=0 @D
ay* az%ay* az* '
where

azg_ff_%(i —2)ip=1A% el = lnh,.

xy
We seek the solution of this equation in the form
uy, = @(t) cos hz, t = Ay. (2.2)
It follows from the incompressibility condition (1.4) that
U, = —@'(t) sin Az,
Denoting by h; and h, the thicknesses of the layers of the bimetallic sheet at the instant in question, we trans~

form to dimensionless coordinates. We place the origin of coordinates at the boundary between the layers.
Then for the first (lower) layer of the sheet —1 <y =< 0, and for the second (upper) layer 0 =<y =<y, where y =

hy/hy.
Under condition (2.2) the solution of Egs. (2.1) for the first and second layers of the sheet has the form

. nyt -
@1 = (Cyycosvyt + Cigpsinvit)e ' + (Cpycosvit + Oy, sinwyt)e P

P2 = (Car cOS%yt + Cyp 81 %,1) 6" + (Cog CO8%3t + O sin vyt) 0™,
where
Uy = V(ﬁ + )2 v, = V(ﬁ — 0‘1)/2§
P = V(ﬁ + 3)/2; v, = V(ﬁ — a,)/2;
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o, = J— o, == — — 1 — )\/ .
1 B:c; 2 ( )’ 2 B, 2 ( x)

We determine the integration constants Cjj, from the condition that there are no loads on the free sur-
faces of the sheets aty =—1andy = v, and from the condmon of continuity of the components of the dis-
placements u ’ uy and the components of the stresses oy, Sxy at the boundary between the two layers (at y = 0).

From (1.15) we obtain aty =

d
SO % 63(1) u =0, o = 0;
aty =y '
@ _ 2 o0
Szy ——goe( )ﬂuéz) =0, o) = 0;
aty =0

W 2 o8 (1) 2 &

Sy — 305Uy = s 50 o(z) 5 —u?, ol = o).
These conditions form a system of eight homogeneous algebraic equations for the eight constants Cij. In order
for a nontrivial solution to exist, the determinant of the system must vanigh.

Since the law of variation of the length of the sheet is given, we determine the parameter A character-
izing the extent of the neck from the condition that the axial displacement uy at the ends of the sheet is un-
perturbed, i.e., ux =0 at x = +1/2. Here [ is the instantaneous length of the sheet.

We use a power law approximation of the flow curves of the materials of the layers of the sheet
=4 e = A e

A calculation was performed for a bimetallic sheet of Ya 1-T steel (A =1010 MN/m?, m = 0.263) and St.
25 steel (A =690 MN/m?, m =0.170). Figure 1 shows the critical strain ea, 85 a function of the dimension-
less length 7/h, of the bimetallic sheet for several ratios of the thicknesses of the layers. E can be seen from
the figure that while for the extension of a continuous sheet (y = 0) the critical strain varies with the length
only for short lengths, for the extension of bimetallic sheets the length has a significant effect on the critical
strain eq, at the instant a neck is formed. Figure 2 shows the effect of the ratio of the thicknesses y of the
layers of the bimetallic sheet on the critical strain for infinitely long sheets ¢ —~ or A — 0). Analysis of the
results showed that for infinitely long bimetallic sheets, as for continuous sheets, the critical strain obtained
agreed with the strain determined from the condition of reaching the maximum of the axial load.
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